
CS 161 Design and Analysis of Algorithms

Ioannis Panageas

 Lecture 11    
Graphs, DFS, BFS



© 2015 Goodrich and Tamassia Graphs 2

Graphs
❑ A graph is a pair (V, E), where

◼ V is a set of nodes, called vertices

◼ E is a collection of pairs of vertices, called edges

◼ Vertices and edges are positions and store elements

❑ Example:
◼ A vertex represents an airport and stores the three-letter airport code

◼ An edge represents a flight route between two airports and stores the 
mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL



© 2015 Goodrich and Tamassia Graphs 3

Edge Types
❑ Directed edge

◼ ordered pair of vertices (u,v)

◼ first vertex u is the origin

◼ second vertex v is the destination

◼ e.g., a flight

❑ Undirected edge
◼ unordered pair of vertices (u,v)

◼ e.g., a flight route

❑ Directed graph
◼ all the edges are directed

◼ e.g., route network

❑ Undirected graph
◼ all the edges are undirected

◼ e.g., flight network

ORD PVD
flight

AA 1206

ORD PVD
849

miles



© 2015 Goodrich and Tamassia Graphs 4

John

David
Paul

brown.edu

cox.net

cs.brown.edu

att.net

qwest.net

math.brown.edu

cslab1bcslab1a

Applications
❑ Electronic circuits

◼ Printed circuit board

◼ Integrated circuit

❑ Transportation networks

◼ Highway network

◼ Flight network

❑ Computer networks

◼ Local area network

◼ Internet

◼ Web

❑ Databases

◼ Entity-relationship diagram



© 2015 Goodrich and Tamassia Graphs 5

Terminology
❑ End vertices (or endpoints) of 

an edge
◼ U and V are the endpoints of a

❑ Edges incident on a vertex
◼ a, d, and b are incident on V

❑ Adjacent vertices
◼ U and V are adjacent

❑ Degree of a vertex
◼ X has degree 5 

❑ Parallel edges
◼ h and i are parallel edges

❑ Self-loop
◼ j is a self-loop

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j



© 2015 Goodrich and Tamassia Graphs 6

P1

Terminology (cont.)

❑ Path
◼ sequence of alternating 

vertices and edges 

◼ begins with a vertex

◼ ends with a vertex

◼ each edge is preceded and 
followed by its endpoints

❑ Simple path
◼ path such that all its vertices 

and edges are distinct

❑ Examples
◼ P1=(V,b,X,h,Z) is a simple path

◼ P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 
path that is not simple

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2



© 2015 Goodrich and Tamassia Graphs 7

Terminology (cont.)
❑ Cycle

◼ circular sequence of alternating 
vertices and edges 

◼ each edge is preceded and 
followed by its endpoints

❑ Simple cycle

◼ cycle such that all its vertices 
and edges are distinct

❑ Examples

◼ C1=(V,b,X,g,Y,f,W,c,U,a,) is a 
simple cycle

◼ C2=(U,c,W,e,X,g,Y,f,W,d,V,a,)
is a cycle that is not simple

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2



© 2015 Goodrich and Tamassia Graphs 8

Properties
Notation

n number of vertices

m number of edges

deg(v) degree of vertex v

Property 1

Sv deg(v) = 2m

Proof: each edge is 
counted twice

Property 2
In an undirected graph 

with no self-loops and 
no multiple edges

m  n (n - 1)/2

Proof: each vertex has 
degree at most (n - 1)

What is the bound for a 
directed graph?

Example

◼ n = 4

◼ m = 6

◼ deg(v) = 3



© 2015 Goodrich and Tamassia Graphs 9

Vertices and Edges

❑ A graph is a collection of vertices and edges. 

❑ A Vertex is can be an abstract unlabeled object 
or it can be labeled (e.g., with an integer 
number or an airport code) or it can store other 
objects

❑ An Edge can likewise be an abstract unlabeled 
object or it can be labeled (e.g., a flight 
number, travel distance, cost), or it can also 
store other objects.



© 2015 Goodrich and Tamassia Graphs 12

Edge List Structure
❑ Vertex object

◼ element

◼ reference to position in 
vertex sequence

❑ Edge object
◼ element

◼ origin vertex object

◼ destination vertex object

◼ reference to position in 
edge sequence

❑ Vertex sequence
◼ sequence of vertex 

objects

❑ Edge sequence
◼ sequence of edge objects



© 2015 Goodrich and Tamassia Graphs 13

Adjacency List Structure
❑ Incidence sequence 

for each vertex
◼ sequence of 

references to edge 
objects of incident 
edges

❑ Augmented edge 
objects
◼ references to 

associated 
positions in 
incidence 
sequences of end 
vertices



© 2015 Goodrich and Tamassia Graphs 14

Adjacency Matrix Structure
❑ Edge list structure

❑ Augmented vertex 
objects
◼ Integer key (index) 

associated with vertex

❑ 2D-array adjacency 
array
◼ Reference to edge 

object for adjacent 
vertices

◼ Null for non 
nonadjacent vertices

❑ The “old fashioned”
version just has 0 for 
no edge and 1 for edge



© 2015 Goodrich and Tamassia Graphs 15

Performance
(All bounds are big-oh running times, except  for “Space”)

▪ n vertices, m edges

▪ no parallel edges

▪ no self-loops

Edge
List

Adjacency
List

Adjacency 
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n

areAdjacent (v, w) m min(deg(v), deg(w)) 1

insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1

removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1



© 2015 Goodrich and Tamassia Depth-First Search 1

Depth-First Search

DB

A

C

E

Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015



© 2015 Goodrich and Tamassia Depth-First Search 2

Subgraphs

❑ A subgraph S of a graph 
G is a graph such that 

◼ The vertices of S are a 
subset of the vertices of G

◼ The edges of S are a 
subset of the edges of G

❑ A spanning subgraph of G 
is a subgraph that 
contains all the vertices 
of G

Subgraph

Spanning subgraph



© 2015 Goodrich and Tamassia

Application: Web Crawlers
❑ A fundamental kind of algorithmic operation that we 

might wish to perform on a graph is traversing the 
edges and the vertices of that graph. 

❑ A traversal is a systematic procedure for exploring a 
graph by examining all of its vertices and edges. 

❑ For example, a web crawler, which is the data 
collecting part of a search engine, must explore a 
graph of hypertext documents by examining its 
vertices, which are the documents, and its edges, 
which are the hyperlinks between documents. 

❑ A traversal is efficient if it visits all the vertices and 
edges in linear time.

Depth-First Search 3



© 2015 Goodrich and Tamassia Depth-First Search 4

Connectivity

❑ A graph is 
connected if there is 
a path between 
every pair of 
vertices

❑ A connected 
component of a 
graph G is a 
maximal connected 
subgraph of G

Connected graph

Non connected graph with two 
connected components



© 2015 Goodrich and Tamassia Depth-First Search 5

Trees and Forests

❑ A (free) tree is an 
undirected graph T such 
that
◼ T is connected

◼ T has no cycles

This definition of tree is 
different from the one of 
a rooted tree

❑ A forest is an undirected 
graph without cycles

❑ The connected 
components of a forest 
are trees

Tree

Forest



© 2015 Goodrich and Tamassia Depth-First Search 6

Spanning Trees and Forests

❑ A spanning tree of a 
connected graph is a 
spanning subgraph that is 
a tree

❑ A spanning tree is not 
unique unless the graph is 
a tree

❑ Spanning trees have 
applications to the design 
of communication 
networks

❑ A spanning forest of a 
graph is a spanning 
subgraph that is a forest

Graph

Spanning tree



© 2015 Goodrich and Tamassia Depth-First Search 7

Depth-First Search

❑ Depth-first search (DFS) 
is a general technique 
for traversing a graph

❑ A DFS traversal of a 
graph G 
◼ Visits all the vertices and 

edges of G

◼ Determines whether G is 
connected

◼ Computes the connected 
components of G

◼ Computes a spanning 
forest of G

❑ DFS on a graph with n
vertices and m edges 
takes O(n + m ) time

❑ DFS can be further 
extended to solve other 
graph problems
◼ Find and report a path 

between two given 
vertices

◼ Find a cycle in the graph

❑ Depth-first search is to 
graphs what Euler tour 
is to binary trees



© 2015 Goodrich and Tamassia Depth-First Search 8

DFS Algorithm from a Vertex



© 2015 Goodrich and Tamassia Depth-First Search 9

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge

back edge

A visited vertex

A unexplored vertex

unexplored edge



© 2015 Goodrich and Tamassia Depth-First Search 10

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E



© 2015 Goodrich and Tamassia Depth-First Search 11

DFS and Maze Traversal 

❑ The DFS algorithm is 
similar to a classic 
strategy for exploring 
a maze
◼ We mark each 

intersection, corner 
and dead end (vertex) 
visited

◼ We mark each corridor 
(edge ) traversed

◼ We keep track of the 
path back to the 
entrance (start vertex) 
by means of a rope 
(recursion stack)



© 2015 Goodrich and Tamassia Depth-First Search 12

Properties of DFS

Property 1
DFS(G, v) visits all the 
vertices and edges in 
the connected 
component of v

Property 2
The discovery edges 
labeled by DFS(G, v) 
form a spanning tree of 
the connected 
component of v

DB

A

C

E



© 2015 Goodrich and Tamassia

The General DFS Algorithm

❑ Perform a DFS from each unexplored 
vertex:

Depth-First Search 13



© 2015 Goodrich and Tamassia Depth-First Search 14

Analysis of DFS

❑ Setting/getting a vertex/edge label takes O(1) time

❑ Each vertex is labeled twice 
◼ once as UNEXPLORED

◼ once as VISITED

❑ Each edge is labeled twice
◼ once as UNEXPLORED

◼ once as DISCOVERY or BACK

❑ Method incidentEdges is called once for each vertex

❑ DFS runs in O(n + m) time provided the graph is 
represented by the adjacency list structure

◼ Recall that Sv deg(v) = 2m



© 2015 Goodrich and Tamassia Breadth-First Search 1

Breadth-First Search

CB

A

E

D

L0

L1

F
L2

Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015



© 2015 Goodrich and Tamassia Breadth-First Search 2

Breadth-First Search

❑ Breadth-first search 
(BFS) is a general 
technique for traversing 
a graph

❑ A BFS traversal of a 
graph G 
◼ Visits all the vertices and 

edges of G

◼ Determines whether G is 
connected

◼ Computes the connected 
components of G

◼ Computes a spanning 
forest of G

❑ BFS on a graph with n
vertices and m edges 
takes O(n + m ) time

❑ BFS can be further 
extended to solve other 
graph problems

◼ Find and report a path 
with the minimum 
number of edges 
between two given 
vertices 

◼ Find a simple cycle, if 
there is one



© 2015 Goodrich and Tamassia Breadth-First Search 3

BFS Algorithm
❑ The algorithm uses “levels” Li and  a mechanism for setting and getting 

“labels” of vertices and edges.



© 2015 Goodrich and Tamassia Breadth-First Search 4

Example

CB

A

E

D

discovery edge

cross edge

A visited vertex

A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F



© 2015 Goodrich and Tamassia Breadth-First Search 5

Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2



© 2015 Goodrich and Tamassia Breadth-First Search 6

Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2



© 2015 Goodrich and Tamassia Breadth-First Search 7

Properties
Notation

Gs: connected component of s

Property 1
BFS(G, s) visits all the vertices and 
edges of Gs

Property 2
The discovery edges labeled by 
BFS(G, s) form a spanning tree Ts

of Gs

Property 3
For each vertex v in Li

◼ The path of  Ts from s to v has i
edges 

◼ Every path from s to v in Gs has at 
least i edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F



© 2015 Goodrich and Tamassia Breadth-First Search 8

Analysis

❑ Setting/getting a vertex/edge label takes O(1) time

❑ Each vertex is labeled twice 
◼ once as UNEXPLORED

◼ once as VISITED

❑ Each edge is labeled twice
◼ once as UNEXPLORED

◼ once as DISCOVERY or CROSS

❑ Each vertex is inserted once into a sequence Li

❑ Method incidentEdges is called once for each vertex

❑ BFS runs in O(n + m) time provided the graph is 
represented by the adjacency list structure

◼ Recall that Sv deg(v) = 2m



© 2015 Goodrich and Tamassia Breadth-First Search 9

Applications

❑ We can use the BFS traversal algorithm, for a 
graph G, to solve the following problems in 
O(n + m) time

◼ Compute the connected components of G

◼ Compute a spanning forest of G

◼ Find a simple cycle in G, or report that G is a 

forest

◼ Given two vertices of G, find a path in G between 

them with the minimum number of edges, or 
report that no such path exists



© 2015 Goodrich and Tamassia Breadth-First Search 10

DFS vs. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS

Spanning forest, connected 
components, paths, cycles

 

Shortest paths 

Biconnected components 



© 2015 Goodrich and Tamassia Breadth-First Search 11

DFS vs. BFS (cont.)

Back edge (v,w)

◼ w is an ancestor of v in 

the tree of discovery 
edges

Cross edge (v,w)

◼ w is in the same level as 
v or in the next level

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS


