

#### Lecture 11 Graphs, DFS, BFS

#### CS 161 Design and Analysis of Algorithms Ioannis Panageas

#### Graphs

- $\Box$  A graph is a pair (*V*, *E*), where
  - *V* is a set of nodes, called vertices
  - *E* is a collection of pairs of vertices, called edges
  - Vertices and edges are positions and store elements
- Example:
  - A vertex represents an airport and stores the three-letter airport code
  - An edge represents a flight route between two airports and stores the mileage of the route



# Edge Types

- Directed edge
  - ordered pair of vertices (u,v)
  - first vertex u is the origin
  - second vertex v is the destination
  - e.g., a flight
- Undirected edge
  - unordered pair of vertices (u,v)
  - e.g., a flight route
- Directed graph
  - all the edges are directed
  - e.g., route network
- Undirected graph
  - all the edges are undirected
  - e.g., flight network





# Applications

- cslab1a cslab1b Electronic circuits П math.brown.edu Printed circuit board Integrated circuit cs.brown.edu Transportation networks 0 000000 00 Highway network brown.edu Flight network 0 000000 00 awest.net att.net Computer networks Local area network 0 000000 00 Internet cox.net Web John Databases Paul David
  - Entity-relationship diagram

# Terminology

- End vertices (or endpoints) of an edge
  - U and V are the endpoints of a
- Edges incident on a vertex
  - a, d, and b are incident on V
- Adjacent vertices
  - U and V are adjacent
- Degree of a vertex
  - X has degree 5
- Parallel edges
  - h and i are parallel edges
- □ Self-loop
  - j is a self-loop

b

e

g

C

h

a

# Terminology (cont.)

#### Path

- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
  - path such that all its vertices
  - and edges are distinct
- Examples
  - P<sub>1</sub>=(V,b,X,h,Z) is a simple path
  - P<sub>2</sub>=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple



# Terminology (cont.)

#### Cycle

- circular sequence of alternating
- vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
  - cycle such that all its vertices and edges are distinct
- Examples
  - C<sub>1</sub>=(V,b,X,g,Y,f,W,c,U,a,⊥) is a simple cycle
  - C<sub>2</sub>=(U,c,W,e,X,g,Y,f,W,d,V,a, →) is a cycle that is not simple



#### Properties

**Property 1**  $\Sigma_{v} \deg(v) = 2m$ Proof: each edge is counted twice Property 2 In an undirected graph with no self-loops and no multiple edges  $m \le n \ (n-1)/2$ Proof: each vertex has degree at most (n-1)What is the bound for a directed graph?

#### Notation

n number of vertices
m number of edges
deg(v) degree of vertex v

Example n = 4

■ *m* = 6

•  $\deg(v) = 3$ 

### Vertices and Edges

- A graph is a collection of vertices and edges.
   A Vertex is can be an abstract unlabeled object or it can be labeled (e.g., with an integer number or an airport code) or it can store other objects
- An Edge can likewise be an abstract unlabeled object or it can be labeled (e.g., a flight number, travel distance, cost), or it can also store other objects.

# **Edge List Structure**

#### Vertex object

- element
- reference to position in vertex sequence
- Edge object
  - element
  - origin vertex object
  - destination vertex object
  - reference to position in edge sequence
- Vertex sequence
  - sequence of vertex objects
- Edge sequence
  - sequence of edge objects





Graphs

# **Adjacency List Structure**

- Incidence sequence for each vertex
  - sequence of references to edge objects of incident edges
- Augmented edge objects
  - references to associated positions in incidence sequences of end vertices











Graphs

#### © 2015 Goodrich and Tamassia

# **Adjacency Matrix Structure**

- Edge list structure
- Augmented vertex objects
  - Integer key (index) associated with vertex
- D 2D-array adjacency
  - array
    - Reference to edge object for adjacent vertices
    - Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge







2

- 3

Graphs

### Performance

(All bounds are big-oh running times, except for "Space")

| <ul> <li><i>n</i> vertices, <i>m</i> edges</li> <li>no parallel edges</li> <li>no self-loops</li> </ul> | Edge<br>List | Adjacency<br>List        | Adjacency<br>Matrix   |
|---------------------------------------------------------------------------------------------------------|--------------|--------------------------|-----------------------|
| Space                                                                                                   | n+m          | n+m                      | <b>n</b> <sup>2</sup> |
| incidentEdges(v)                                                                                        | m            | deg(v)                   | n                     |
| areAdjacent (v, w)                                                                                      | m            | $\min(\deg(v), \deg(w))$ | 1                     |
| insertVertex( <i>o</i> )                                                                                | 1            |                          | <b>n</b> <sup>2</sup> |
| <pre>insertEdge(v, w, o)</pre>                                                                          | 1            | 1                        | 1                     |
| removeVertex(v)                                                                                         | m            | deg(v)                   | <b>n</b> <sup>2</sup> |
| removeEdge(e)                                                                                           | 1            |                          | 1                     |

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

### **Depth-First Search**



# Subgraphs

- A subgraph S of a graph
   G is a graph such that
  - The vertices of S are a subset of the vertices of G
  - The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G





#### Spanning subgraph

# **Application: Web Crawlers**

- A fundamental kind of algorithmic operation that we might wish to perform on a graph is traversing the edges and the vertices of that graph.
- A traversal is a systematic procedure for exploring a graph by examining all of its vertices and edges.
- For example, a web crawler, which is the data collecting part of a search engine, must explore a graph of hypertext documents by examining its vertices, which are the documents, and its edges, which are the hyperlinks between documents.
- A traversal is efficient if it visits all the vertices and edges in linear time.

© 2015 Goodrich and Tamassia

**Depth-First Search** 

### Connectivity

 A graph is connected if there is a path between every pair of vertices

 A connected component of a graph G is a maximal connected subgraph of G Connected graph

Non connected graph with two connected components

#### **Trees and Forests**

- A (free) tree is an undirected graph T such that
  - T is connected
  - T has no cycles
     This definition of tree is different from the one of a rooted tree
- A forest is an undirected graph without cycles
- The connected components of a forest are trees





Forest

#### **Spanning Trees and Forests**

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest





### **Depth-First Search**

- Depth-first search (DFS)
   is a general technique
   for traversing a graph
- A DFS traversal of a graph G
  - Visits all the vertices and edges of G
  - Determines whether G is connected
  - Computes the connected components of G
  - Computes a spanning forest of G

□ DFS on a graph with nvertices and m edges takes O(n + m) time

- DFS can be further extended to solve other graph problems
  - Find and report a path between two given vertices
  - Find a cycle in the graph
- Depth-first search is to graphs what Euler tour is to binary trees

# **DFS Algorithm from a Vertex**

```
Algorithm \mathsf{DFS}(G, v):
```

*Input:* A graph G and a vertex v in G

**Output:** A labeling of the edges in the connected component of v as discovery edges and back edges, and the vertices in the connected component of v as explored

Label v as explored for each edge, e, that is incident to v in G do if e is unexplored then Let w be the end vertex of e opposite from vif w is unexplored then Label e as a discovery edge DFS(G, w)else Label e as a back edge







### **DFS and Maze Traversal**

- The DFS algorithm is similar to a classic strategy for exploring a maze
  - We mark each intersection, corner and dead end (vertex) visited
  - We mark each corridor (edge) traversed
  - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)



### **Properties of DFS**

#### Property 1

*DFS*(*G*, *v*) visits all the vertices and edges in the connected component of *v* 

#### Property 2

The discovery edges labeled by DFS(G, v)form a spanning tree of the connected component of v

### The General DFS Algorithm

# Perform a DFS from each unexplored vertex:

Algorithm  $\mathsf{DFS}(G)$ :

Input: A graph G

**Output:** A labeling of the vertices in each connected component of G as explored

Initially label each vertex in v as unexplored for each vertex, v, in G do

if v is unexplored then DFS(G, v)

# Analysis of DFS



- □ Setting/getting a vertex/edge label takes *O*(1) time
- Each vertex is labeled twice
  - once as UNEXPLORED
  - once as VISITED
- Each edge is labeled twice
  - once as UNEXPLORED
  - once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
- □ DFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
  - Recall that  $\Sigma_v \deg(v) = 2m$

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

#### **Breadth-First Search**



### **Breadth-First Search**

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G
  - Visits all the vertices and edges of G
  - Determines whether G is connected
  - Computes the connected components of G
  - Computes a spanning forest of G

BFS on a graph with *n* vertices and *m* edges takes O(n + m) time
 BFS can be further extended to solve other

#### graph problems

- Find and report a path with the minimum number of edges between two given vertices
- Find a simple cycle, if there is one

# **BFS Algorithm**

```
    The algorithm uses "levels" L<sub>i</sub> and a mechanism for setting and getting
"labels" of vertices and edges.
```

Algorithm BFS(G, s): *Input:* A graph G and a vertex s of G**Output:** A labeling of the edges in the connected component of s as discovery edges and cross edges Create an empty list,  $L_0$ Mark s as explored and insert s into  $L_0$  $i \leftarrow 0$ while  $L_i$  is not empty do create an empty list,  $L_{i+1}$ for each vertex, v, in  $L_i$  do for each edge, e = (v, w), incident on v in G do if edge e is unexplored then if vertex w is unexplored then Label *e* as a discovery edge Mark w as explored and insert w into  $L_{i+1}$ else Label e as a cross edge  $i \leftarrow i + 1$ 







© 2015 Goodrich and Tamassia

**Breadth-First Search** 

#### Properties

Notation  $G_s$ : connected component of s Property 1 BFS(G, s) visits all the vertices and edges of  $G_{s}$ Property 2 The discovery edges labeled by BFS(G, s) form a spanning tree  $T_s$ of  $G_{\rm s}$ **Property 3**  $L_1$ For each vertex v in  $L_i$ The path of  $T_s$  from s to v has i edges

Every path from s to v in G<sub>s</sub> has at least i edges





### Analysis

- □ Setting/getting a vertex/edge label takes *O*(1) time
- Each vertex is labeled twice
  - once as UNEXPLORED
  - once as VISITED
- Each edge is labeled twice
  - once as UNEXPLORED
  - once as DISCOVERY or CROSS
- $\Box$  Each vertex is inserted once into a sequence  $L_i$
- Method incidentEdges is called once for each vertex
- BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
  - Recall that  $\sum_{v} \deg(v) = 2m$

### Applications

- □ We can use the BFS traversal algorithm, for a graph  $G_{r}$  to solve the following problems in O(n + m) time
  - Compute the connected components of G
  - Compute a spanning forest of G
  - Find a simple cycle in G, or report that G is a forest
  - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

### DFS vs. BFS







© 2015 Goodrich and Tamassia

**Breadth-First Search** 

# DFS vs. BFS (cont.)

#### Back edge (v,w)

 w is an ancestor of v in the tree of discovery edges Cross edge (v,w)

w is in the same level as
 v or in the next level



© 2015 Goodrich and Tamassia

**Breadth-First Search**