

Lecture 11 Graphs, DFS, BFS

CS 161 Design and Analysis of Algorithms Ioannis Panageas

Graphs

- A graph is a pair $(\boldsymbol{V}, \boldsymbol{E})$, where
- V is a set of nodes, called vertices
- E is a collection of pairs of vertices, called edges
- Vertices and edges are positions and store elements
- Example:
- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route

Edge Types

- Directed edge
- ordered pair of vertices (u,v)
- first vertex u is the origin
- second vertex v is the destination
- e.g., a flight
- Undirected edge
- unordered pair of vertices (u,v)
- e.g., a flight route

- Directed graph
- all the edges are directed
- e.g., route network
- Undirected graph
- all the edges are undirected
- e.g., flight network

Applications

- Electronic circuits
- Printed circuit board
- Integrated circuit
- Transportation networks
- Highway network
- Flight network
- Computer networks
- Local area network
- Internet
- Web
- Databases

- Entity-relationship diagram

Terminology

- End vertices (or endpoints) of an edge
- U and V are the endpoints of a
- Edges incident on a vertex
- a, d, and b are incident on V
- Adjacent vertices
- U and V are adjacent
- Degree of a vertex
- X has degree 5
- Parallel edges
- h and i are parallel edges
- Self-loop

- j is a self-loop

Terminology (cont.)

- Path
- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
- path such that all its vertices and edges are distinct
- Examples
- $P_{1}=(V, b, X, h, Z)$ is a simple path
- $P_{2}=(U, c, W, e, X, g, Y, f, W, d, V)$ is a
 path that is not simple

Terminology (cont.)

- Cycle
- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
- cycle such that all its vertices and edges are distinct
- Examples
- $C_{1}=(V, b, X, g, Y, f, W, c, U, a,-J)$ is a simple cycle
- $\left.C_{2}=(U, c, W, e, X, g, Y, f, W, d, V, a\lrcorner,\right)$ is a cycle that is not simple

Properties

Property 1
$\Sigma_{v} \operatorname{deg}(v)=2 m$
Proof: each edge is counted twice

Property 2

In an undirected graph with no self-loops and no multiple edges

$$
\boldsymbol{m} \leq \boldsymbol{n}(\boldsymbol{n}-1) / 2
$$

Proof: each vertex has degree at most $(\boldsymbol{n}-1)$

What is the bound for a directed graph?

Notation

$n \quad$ number of vertices
$m \quad$ number of edges $\operatorname{deg}(\boldsymbol{v})$ degree of vertex \boldsymbol{v}

Example

- $n=4$
- $m=6$
- $\operatorname{deg}(\boldsymbol{v})=3$

Vertices and Edges

- A graph is a collection of vertices and edges.
- A Vertex is can be an abstract unlabeled object or it can be labeled (e.g., with an integer number or an airport code) or it can store other objects
- An Edge can likewise be an abstract unlabeled object or it can be labeled (e.g., a flight number, travel distance, cost), or it can also store other objects.

Edge List Structure

- Vertex object
- element
- reference to position in vertex sequence
- Edge object

- element
- origin vertex object
- destination vertex object
- reference to position in edge sequence
- Vertex sequence
- sequence of vertex objects
- Edge sequence
- sequence of edge objects

Adjacency List Structure

- Incidence sequence for each vertex
- sequence of references to edge objects of incident edges

- Augmented edge objects
- references to associated positions in incidence sequences of end vertices

Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
- Integer key (index) associated with vertex
- 2D-array adjacency array
- Reference to edge object for adjacent vertices
- Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge

Performance

(All bounds are big-oh running times, except for "Space")

\boldsymbol{n} v vertices, \boldsymbol{m} edges $\boldsymbol{-}$ no parallel edges - no self-loops	Edge List	Adjacency List	Adjacency Matrix
Space	$\boldsymbol{n + \boldsymbol { m }}$	$\boldsymbol{n + \boldsymbol { m }}$	\boldsymbol{n}^{2}
incidentEdges (\boldsymbol{v})	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}
areAdjacent $(\boldsymbol{v}, \boldsymbol{w})$	\boldsymbol{m}	$\min (\operatorname{deg}(\boldsymbol{v}), \operatorname{deg}(\boldsymbol{w}))$	1
insertVertex (\boldsymbol{o})	1	1	\boldsymbol{n}^{2}
insertEdge $(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{o})$	1	1	1
removeVertex (\boldsymbol{v})	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}^{2}
removeEdge (\boldsymbol{e})	1	1	1

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Depth-First Search

Subgraphs

- A subgraph S of a graph G is a graph such that
- The vertices of S are a subset of the vertices of G
- The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G

Subgraph

Spanning subgraph

Application: Web Crawlers

- A fundamental kind of algorithmic operation that we might wish to perform on a graph is traversing the edges and the vertices of that graph.
- A traversal is a systematic procedure for exploring a graph by examining all of its vertices and edges.
- For example, a web crawler, which is the data collecting part of a search engine, must explore a graph of hypertext documents by examining its vertices, which are the documents, and its edges, which are the hyperlinks between documents.
- A traversal is efficient if it visits all the vertices and edges in linear time.

Connectivity

- A graph is
connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G

Connected graph

Non connected graph with two connected components

Trees and Forests

- A (free) tree is an undirected graph T such that
- T is connected
- T has no cycles

This definition of tree is
different from the one of
a rooted tree

- A forest is an undirected graph without cycles
- The connected
components of a forest are trees

Forest

Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree

Graph

- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Spanning tree

Depth-First Search

- Depth-first search (DFS) is a general technique for traversing a graph
- A DFS traversal of a graph G
- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G
- DFS on a graph with n vertices and m edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- DFS can be further extended to solve other graph problems
- Find and report a path between two given vertices
- Find a cycle in the graph
- Depth-first search is to graphs what Euler tour is to binary trees

DFS Algorithm from a Vertex

Algorithm DFS (G, v) :

Input: A graph G and a vertex v in G
Output: A labeling of the edges in the connected component of v as discovery edges and back edges, and the vertices in the connected component of v as explored

Label v as explored
for each edge, e, that is incident to v in G do
if e is unexplored then
Let w be the end vertex of e opposite from v
if w is unexplored then
Label e as a discovery edge
$\operatorname{DFS}(G, w)$
else
Label e as a back edge

Example

(A) unexplored vertex
 (A) visited vertex
 - unexplored edge
 \longrightarrow discovery edge
 - - -- back edge

(c) 2015 Goodrich and Tamassia

Depth-First Search

Example (cont.)

© 2015 Goodrich and Tamassia
Depth-First Search

DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
- We mark each intersection, corner and dead end (vertex) visited
- We mark each corridor (edge) traversed
- We keep track of the path back to the entrance (start vertex) by means of a rope
 (recursion stack)

Properties of DFS

Property 1
$\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{v})$ visits all the vertices and edges in the connected component of v
Property 2
The discovery edges labeled by $\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{v})$ form a spanning tree of the connected component of v

The General DFS Algorithm

a Perform a DFS from each unexplored vertex:

Algorithm DFS (G) :
Input: A graph G
Output: A labeling of the vertices in each connected component of G as explored
Initially label each vertex in v as unexplored for each vertex, v, in G do
if v is unexplored then
DFS (G, v)

Analysis of DFS

- Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time
- Each vertex is labeled twice
- once as UNEXPLORED
- once as VISITED
- Each edge is labeled twice
- once as UNEXPLORED
- once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
- DFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is represented by the adjacency list structure
- Recall that $\Sigma_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Breadth-First Search

Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G
- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G
- BFS on a graph with n vertices and m edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- BFS can be further extended to solve other graph problems
- Find and report a path with the minimum number of edges between two given vertices
- Find a simple cycle, if there is one

BFS Algorithm

- The algorithm uses "levels" L_{i} and a mechanism for setting and getting "labels" of vertices and edges.

```
Algorithm \(\operatorname{BFS}(G, s)\) :
    Input: A graph \(G\) and a vertex \(s\) of \(G\)
    Output: A labeling of the edges in the connected component of \(s\) as discovery
        edges and cross edges
    Create an empty list, \(L_{0}\)
    Mark \(s\) as explored and insert \(s\) into \(L_{0}\)
    \(i \leftarrow 0\)
    while \(L_{i}\) is not empty do
        create an empty list, \(L_{i+1}\)
        for each vertex, \(v\), in \(L_{i}\) do
            for each edge, \(e=(v, w)\), incident on \(v\) in \(G\) do
                    if edge \(e\) is unexplored then
                    if vertex \(w\) is unexplored then
                        Label \(e\) as a discovery edge
                    Mark \(w\) as explored and insert \(w\) into \(L_{i+1}\)
                    else
                    Label \(e\) as a cross edge
            \(i \leftarrow i+1\)
```


Example

(A) unexplored vertex
(A) visited vertex

- unexplored edge
\longrightarrow discovery edge
- - -- cross edge

Example (cont.)

© 2015 Goodrich and Tamassia
Breadth-First Search

Example (cont.)

Properties

Notation
\boldsymbol{G}_{s} : connected component of s Property 1
$\boldsymbol{B F S}(\boldsymbol{G}, s)$ visits all the vertices and edges of \boldsymbol{G}_{s}
Property 2

The discovery edges labeled by $\boldsymbol{B F S}(\boldsymbol{G}, \boldsymbol{s})$ form a spanning tree \boldsymbol{T}_{s} of G_{s}
Property 3
For each vertex v in L_{i}

- The path of T_{s} from s to v has i edges
- Every path from s to v in \boldsymbol{G}_{s} has at least i edges

Analysis

- Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time
- Each vertex is labeled twice
- once as UNEXPLORED
- once as VISITED
- Each edge is labeled twice
- once as UNEXPLORED
- once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence \boldsymbol{L}_{i}
- Method incidentEdges is called once for each vertex
- BFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is represented by the adjacency list structure
- Recall that $\sum_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$

Applications

- We can use the BFS traversal algorithm, for a graph G, to solve the following problems in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- Compute the connected components of G
- Compute a spanning forest of G
- Find a simple cycle in \boldsymbol{G}, or report that \boldsymbol{G} is a forest
- Given two vertices of \boldsymbol{G}, find a path in \boldsymbol{G} between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

DFS vs. BFS (cont.)

Back edge ($\boldsymbol{v}, \boldsymbol{w}$)

- w is an ancestor of v in the tree of discovery edges

Cross edge ($\boldsymbol{v}, \boldsymbol{w}$)

- w is in the same level as v or in the next level

BFS

